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1. Introduction 

The increasing interest for understanding the vibration 

behavior to avoid or control the vibration problems at the 

earliest stage is widely used in most engineering fields, 

including mechanical ones.  

One of the most important of these problems is the 

identification of damage and cracks in structures. Often times, 

many researchers and those interested in the field of Modal 

analysis data ask some questions regarding with modal 

analysis and how the systems of structures vibrate. So studying 

the structural dynamic is very essentially to understand and 

evaluate the performance of any engineering product [1]. 

So engineers and researchers are often resorting to effective 

and reliable tool called Modal Analysis Data. The basic 

concept of Modal Analysis Data is the process of identifying 

the underlying dynamic properties of a system like natural 

frequencies, damping factors, and mode shapes [2]. 

An operational modal analysis (OMA) began in the early 

1990’s has received great interest in most engineering fields, 

including aviation, mechanics, and civil, and has applications 

in various fields, including steel structures, towers, bridges, 

buildings, etc.  Where James, G. H, et. al [3] Natural Excitation 

Method presented modal identification from output-only 

measurements in the case of Natural Excitation Technique 

(NExT). Later in 2002, the two researchers, Wei-Xin Ren and 

Guido De Roeck [4] proposed the scheme for identification the 

damage in structures by using modal analysis data and applied 

this scheme experimentally and theoretically.  The results 

showed the scheme proposed real successive to identify the 

damage characteristics of structural. And changes in the 

dynamic characteristics of a reinforced concrete beam. As well 

as a potential advantage of the approach is that the modal 

forces involved in the scheme can be derived directly from any 

FEM package, and the mode shape expansion is incorporated 

into the damage assessment procedure using a static recovery 

technique. 

Pankaj Kumar, et. al. (2015) [5] investigated the Modal 

behavior of Beam-type structures. Included in the 

investigation are Fixed-Free, Pinned-Pinned, and Fixed-Fixed 

beams. By using ANSYS simulation for theoretical analysis, 

and FFT analyzer for experiment. The results demonstrated 

that natural frequencies derived from simulation and 

experiment closely match analytical ones. 

Amol P. Kale1 and Dr. S. N. Shelke (2017) [6] proposed a 

numerical technique for analyzing  cantilever beam and 

improving the strength for different cross section with 

materials (steel and composite) to get optimum design for 

beam. The Analytical natural frequency and experimental 

frequency for the beam were found to have an acceptable and 

considerable as a good results with max percentage error of 

10%. But the natural frequency of Epoxy beam less than mild 

steel. 

N. A. Saleh,., and  Z. A Hardan (2018) [7] studied the 

vibration behavior of cantilevered, simply supported and 

fixed-fixed beams with a bolted joint of different lap’s 

type and under free and forced vibration. Investigations 

have been done into the impacts of numerous parameters 

on natural frequency, mode shape, and amplitude, 

including beam configuration, pre-torque, angular 

 

Basrah Journal for Engineering Sciences, Vol. 23, No. 2, (2023), 87-98 

Original Article Journal homepage: www.bjes.edu.iq 

ISSN (Online): 23118385, ISSN (Print): 18146120  

Numerical Study for Damage Identification in Beams Using 

Continuous Wavelet Transformation and Convolution  

Neural Network 

Eman R. Bustan 1, *, Jaafar K. Ali 2 

1,2 Department of Mechanical Engineering, College of Engineering, University of Basrah, Basrah, Iraq 

E-mail addresses:  emanrah123@gmail.com ,  jaafar.ali@uobasrah.edu.iq   

Received: 3 April 2023; Accepted: 12 June 2023; Published: 30 December 2023 

Abstract 

The discovery and identification of damages in engineering structures is very important in the field of engineering maintenance, as it is a great 

challenge in presenting new methods in measuring vibrations and discovering damages with the development in the field of automation and 

high accuracy in discovering damages. In this study, natural frequencies and mode shapes of transverse vibration for damage detection in 

structures are investigated. The study is performed for various crack depth and crack location. And suggested a new technique based on 

Continuous Wavelet Transform (CWT) and Convolution Neural Network (CNN). The comparison will be done by simulating the oscillations 

of a cantilever steel beam with and without defect as a numerical case. The proposed new technique proved to outperform classical methods 

and has achieved a100% accuracy in the identification of defect position for the data studied. 

Keywords: Cantilevered beam, Modal analysis, Continuous wavelet transform, Convolution neural network. 

© 2023 The Authors. Published by the University of Basrah. Open-access article. 

https://doi.org/10.33971/bjes.23.2.11 

https://creativecommons.org/licenses/by/4.0/
http://www.bjes.edu.iq/
mailto:%20%20emanrah123@gmail.com
mailto:%20%20emanrah123@gmail.com
mailto:%20%20jaafar.ali@uobasrah.edu.iq
https://doi.org/10.33971/bjes.23.2.11


88     E. R. Bustan and J. K. Ali / Basrah Journal for Engineering Sciences, Vol. 23, No. 2, (2023), 87-98                            

speeds, and positions of the motor. The results showed 

an experimental work present a good agreement with 

numerical results and with those available in the 

literature. 
Jai Kumar Sharma (2019) [8] presented modal analysis of 

vibration behavior for different materials types of beam (steel, 

copper, brass, and aluminum) and pinned-pinned and free-free 

boundary condition. The modal analysis (natural frequency, 

mode shapes and damping factors) was done in two part 

theoretically and experimentally. And from comparison the 

results, the correlation between the theoretical and 

experimental was determined to be extremely high. 

Yahya. M. Ameen and Jaafar Kh. Ali (2020) [2] studied an 

experimental modal parameters based on finite element 

method (FEM) for circular shaft with free ends boundary 

condition, and then add to shaft two disks as second case. The 

simulation of Finite Element Method (FEM) was done by 

software program ANSYS 15 workbench. And the results 

demonstrated that the experimental method analysis closely 

matched the numerical results provided by ANSYS, with a 

maximum percentage of error of 2%. 

S H. S, Jasim, and J. K. Ali (2021) [9] introduce new 

method to measurement the vibration non-contact by using 

a high-speed camera. The method had been used (the 

phase-based method) to detect the vibration signal and 

extract the ODS for the images sequence (video) without 

the need to use vibration measurements.  They conclude 

that it is reasonable to verify that the ODS and phase difference 

of an object can be successfully measured with a high-speed 

camera. 
The presence of damage (cracks) in mechanical structures 

causes a reduction in local stiffness values and an increase in 

damping factors, hence affecting the vibration response [10].  

Z.C. Ong, et. al (2014) [11] introduced an experimental model 

for detecting fractures on rotor systems by constructing an 

algorithm to determine the location of cracks based on the first 

and second natural frequencies. The results suggested that the 

location of cracks could be determined with confidence and a 

relatively small error, and the crack severity could be 

calculated using the damage index 

G. Gautier, et. al (2015) [12]  identify a new method for 

updating a finite element method-based subspace fitting 

methodology for detecting the vibration of structures and 

localizing damage. And the most important results they 

reached the finite element method (FE) based subspace 

approach had been successfully applied to numerically and 

experimentally beam for the identification damage structures 

for localizing single and multiple notches at a cheap 

computational cost. 

Shumon Miaa, et. al (2017) [13] proposed the effect of natural 

frequencies for  cracked  beam type Fixed- Free, a modal 

Analysis  computationally performed by using Finite Element 

method (FEM) and software ”Abaqus”. The results 

demonstrated that the natural frequency decreased as a result 

of cracks. The reduction amount relies on the location and size 

of cracks. 

To take a closer look at the continuous wavelet transform 

(CWT), where it is possible use this transform to get a 

simultaneous time frequency analysis of a signal.  

In the mid-1980s, it began for using the Wavelet analysis to 

examine seismic signals. Where in 1990s, it began rapidly 

developing and used for recognition as a useful tool in science 

and engineering. Wavelet analysis has been used for many 

application of engineering and research fields, comprising 

condition monitoring of machinery, video image compression, 

seismic signal denoising, characterization of turbulent 

intermittency, financial index analysis, etc.  [14]. 

Wei Fan and  Pizhong Qiao, (2009) [15] studied the damage 

detection of cantilever  plate structures by using algorithm 

‘‘Dergauss2d”  of a two-dimensional of continuous wavelet 

transform. To demonstrate the efficacy and practicality of this 

approach, the numerical vibration mode forms of plates with 

various types of damage are utilized. As demonstrated by the 

results, it is a viable and successful technique for damage 

identification of plate- or shell-type structures. 

Based on Continuous Wavelet and Wavelet Packet 

transformations, Mohammad Ali Lotfollahi-Yaghin and 

Mahdi Koohdaragh (2011) [16] proposed a practical and more 

useful method for detecting cracks by using (CWT). And they 

reached to that’s the proposed method (CWT) that used 

research as a powerful mathematical instrument and was more 

effective for identifying structural stiffness anomalies. 

Bülent ORUÇ (2013) [17] examined the effects of magnetic 

source by using Continuous Wavelet Transform (CWT) based 

on varied horizontal locations and magnetization vector depths 

in scale space domain. The results were satisfactory and fairly 

well determined for semi-infinitely extended experimental 

bodies. 

Roger Serra and Lautaro Lopez (2017) [18] investigated a new 

approach for identifying structural damage based on difference 

in deformation of mode shapes of the coefficients of 

continuous wavelet transform.  The results demonstrated that 

a novel methodology was developed and provided the most 

accurate results for detecting the location of damage. By 

comparing the proposed new methodology to well-known and 

classical methods. 

Vahid Shahsavari et al. (2017) [19] proposed and investigated 

a statistical approach for identifying local beam damage. The 

beam was evaluated with two boundary conditions (Simply 

Supported and Fixed ends), the analysis were used continuous 

wavelet transform to obtain first mode of natural frequency 

and   principal component analysis to recover the major 

patterns of coefficient change and filter out noise. The results 

showed that the proposed statistical approaches are highly 

effective for detecting both occurrence and location of damage 

and for two boundary condition. 

Josué Pacheco-Chérrez et al. (2021) [20] introduced a new 

method for detecting damage in cantilever beams. Based on 

two key innovations: first, an image similarity assessment 

method that makes an efficient use of the full wavelet 

scalogram and second, an ensemble approach that accounts for 

material property uncertainty. On the basis of an investigation 

into experimental data, the results indicated that the newly 

proposed method has a 100% recognition rate for damage 

localization. 

Recently, an artificial intelligence has witnessed a great 

development and work to bridge the gap between the 

capabilities of humans and machines. Researchers and those 

interested in this field have done amazing things specifically 

in the field of computer vision. 

Developments in computer vision were created with deep 

learning and mastered over time primarily through one specific 

algorithm, a convolutional neural network (CNN). 
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(CNN) is a Deep Learning technique that is frequently utilized 

in the field of image processing because it is effective at 

handling with image classification and recognition issues [21]. 

Yongmei Zhou and Jingwei Jiang (2015) [22] introduced 

Alexnet Convolutional Neural Network (CNN) to identify in 

images MNIST digit accelerators by using FPGA. The 

implementation operates on the MATLAB/CPU Deep 

Learning Toolbox (CNN) platform. They reached, in the future 

the implement CNN accelerator implementation will be more 

desirable in terms of application. 

Alex Krizhevsky et al. (2017) [23] trained ImageNet LSVRC-

2010 in deep learning Convolutional Neural Network to 

recognize the 1.2 million high-resolution images consisting of 

the 1000 distinct classes (CNN). The results indicated that the 

Convolutional Neural Network (CNN) was able to achieve 

record-breaking performance on an extremely difficult dataset 

and by using supervised learning. And network performance 

degrades if a single convolutional layer is eliminated. 

Boukaye Boubacar Traorea,b, et al. (2018) [24] employed 

deep learning Convolution Neural Network (CNN) to classify 

and  analysis images for medical image, i.e. microscopy, to 

confirm or deny the existence of the epidemic pathogen in 

suspected cases. The suggested CNN architecture provides the 

best classification results with a classification accuracy of 

94%, using 200 Vibrio cholera photos, 200 Plasmodium 

falciparum images, and 80 images as training and testing data, 

respectively. 

Mingyuan Xin and Yong Wang (2019) [21] proposed an error 

back propagation approach based on Convolution Neural 

Network (CNN) to classify images. They evaluated the loss 

function produced by M3 CE on two depth learning standard 

databases (MNIST and CIFAR-10). The experimental results 

demonstrate that M3 CE can increase the cross-entropy and is 

an efficient supplement to the cross-entropy criterion. M3 CE-

CEc has achieved positive outcomes in both databases. And 

advances the new direction of research into image 

classification. 

The recommended methodology for this study is based on the 

following points: 

Using modal analysis data to study the diagnosis and 

identification of defects or cracks in structures such as 

cantilever beams, the cantilevered beam is modeled in the 

Ansys program, its purpose is to find the theoretical response 

of the model without or with the presence of a crack or defect. 

The CWT method is used to analyze the response and 

performed to determine the response at the interface points in 

order to increase the number of points until the CWT becomes 

effective and the results are extracted in the form of images. 

Created a database from the results to be analyzed.  A CNN is 

built to diagnose defects and their locations based on the 

database. 

 

2. Mathematical model  

2.1 Beam Modal Analysis 
 

The first stage involves calculating the natural frequencies for 

the first three modes of the cantilever beam using the software 

program (Ansys 2022R1).  The natural frequencies of beam 

can be expressed by [25]:  
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2.2 Wavelet Transform  

 

2.2.1 Background of wavelet 

 

The Fourier and Wavelet Transforms are utilized to measure 

the similarity between the signal and an analyzing function. 

Comparing their analysis functions, the two transformers are 

dissimilar. The Fourier transform employs complex 

exponentials ( )jwxe  as its analysis functions. The analysis 

function in Wavelet Transform is a wavelet ( ) . The 

fundamental principles of Wavelet Transform Theory [26, 27] 

were established for the purpose of constructing Wavelet 

transforms with certain qualities that make them useful for 

signal processing. 

The mother wavelet ( )  can be written as a zero-mean 

convolution function: 
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Analyzing wavelet ( )  (or mother wavelet) is used to 

construct the CWT function )(, xba , which is defined as 

follows: 
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Where a, b are parameters represented dilation and translation, 

respectively. 

  

2.2.2 Continuous Wavelet Transform (CWT) method 

Constructing a time-frequency representation of a signal )(tx  

using a continuous wavelet transform (CWT) is necessary in 

order to achieve accurate time and frequency localization. The 

CWT is described as the following when a shift and 

compressed or stretched form of a mother wavelet )(x  are 

compared to the input signal f(x), and when the scale 

parameter a>0 and position b, the CWT is defined as: 
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Where 
  is the conjugate of the mother wavelet CWT 

coefficients ),( baCWT f  are obtained by varying the values 

of the scale parameter a, and the position parameter b, 

considering the space-scale perspective of signals, it is 

worthwhile to analyze the wavelet's capacity to respond to 

small signal shifts or discontinuities. The number of vanishing 
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moments is a vital characteristic of a wavelet. If n vanishing 

moments exist in a wavelet, then: 

1...00)( −==
+

−

nforkdxxxk  
(8) 

For any polynomial with orders smaller than the number of 

vanishing moments, the wavelet returns null values. The 

number of vanishing moments reflects the wavelet's sensitivity 

to low-order signals and can be adjusted to consider only 

specific signal components. It is possible to establish 

analytically [18] that for a wavelet with n vanishing moments 

and a rapid decay, there exists a smoothing function u(x) 

defined as follows: 
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A wavelet with n vanishing moments, therefore can be 

expressed as nth-order derivative of the smoothing function

)(x . Coefficients of the Continuous Wavelet Transform can 

be stated as: 
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The previously mentioned wavelet transform is dependent on 

the nth derivative of the signal function f (x) that has been 

smoothed by the function u (x) at the scale a. Detecting 

singularity in a signal function f (x) is then possible by locating 

the abscissa where the maxima of the wavelet transform 

modulus converge at fine scales [26]. In the scenario under 

consideration, the transition in f (x) will be induced by a crack, 

and this is the precise identification approach given. 

 

2.2.3 Mode shape refinement and differentiation 

This paper proposes a strategy based on the detection of 

damage revision using CWT. By adding the coefficients of the 

CWT of the difference between the structure's undamaged and 

damaged mode shape. Then, the difference between the 

extended refined modal shapes is computed; in this study, the 

modal shapes are: 
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After getting the difference between the two modal shapes 

undamaged and damaged, this difference is given a Wavelet 

Transform. T The previous step for the ith mode shape is 

written as: 
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2.2.4 Addition and weighting of mode shapes 

The modal shapes that do not change their natural frequencies 

are almost not taken into account since they do not bring new 

information; what is more, they could become a source of 

noise. So the weighting of the coefficient is used to emphasize 

the most sensitive mode shapes. It is assumed that when the 

change in natural frequency is high, the difference between 

modal shapes will also be important: 
2
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where
i

undamw  and 
i

damw represent the inherent frequencies of 

the mode shape in undamaged and damaged states, 

respectively. 

The normalized version of the CWT coefficients will be 

evaluated to detect and localize structural deterioration. 

According to the prior analysis, any sudden change in the 

coefficients will be interpreted as the result of structural 

deterioration. 

 

2.3 Neural Convolutional Network CNN 

Convolutional Neural Networks (CNN) are a subtype and 

special of artificial neural networks created primarily for 

image processing and recognition by substituting general 

matrix multiplication with convolution in at least one of its 

layers [27]. CNNs typically consist of three layers: 

convolutional, pooling, and fully-connected [28]. As depicted 

in figure 1. 

 
Fig. 1 general operation of CNN. 

 

2.3.1 Convolutional Layer  
 

Convolution layer is the fundamental building component of a 

CNN, consisting of a set of filters or (kernels) that can be 

learned and applied to the local image patch. It is effective for 

abstraction when examples of latent concepts can be separated 

linearly. 

It would be useful to clarify what was intended by the term 

"convolution," since it is used to convey mathematical 

principles and ideas regarding the strategy and process of 

feature modification. In mathematics, specifically algebraic 

topology, convolution is a mathematical operation that 

transforms two functions (u and v) into a third function, which 

is typically considered as a transformed version of one of the 

starting functions. In the case of two real or complex functions, 

u and v, the convolution is an additional function, typically 

denoted u v and defined as [29]: 

( )( ) ( )dtvxuxvu 
+

−

−=
 

(15) 

The convolution satisfies a number of algebraic properties 

(such as commutatively, associativity, distributive identity, 

and multiplicative identity) in order to preserve the qualities of 

the associated geometric images. 

 

2.3.2 Pooling Layer 
 

Pooling Layer is a non-linear down sampling technique. There 

are numerous nonlinear functions for implementing pooling, 

with max pooling being the most used. It divides the input 

image into a series of rectangles and returns the maximum 

value for each sub region. By lowering the number of 
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connections between convolutional layers, it reduces the 

computational load [30]. 

 

2.3.3 ReLU Layer 
 

ReLU Layer is an abbreviation for corrected linear unit, and it 

applies the non-saturating activation function by setting 

negative activation map values to zero [31]. 

 

( )xxf ,0max)( =  (16) 

And the most important common function, such as the 

saturated hyperbolic tangent and the sigmoid function, 

can be employed to improve nonlinearity. ReLU is 

frequently favored over other functions since it trains 

neural networks significantly quicker without sacrificing 

generalization accuracy. See figure 2. 
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ReLU results in a neural network that is trained multiple times 

faster without affecting generalization accuracy significantly. 

 
Fig. 2 Activation function. (a) sigmod, (b) tanh, and (c) ReLU. 

 

2.3.4 Fully connected layer 
 

After the last pooling layer in the CNN process are typically 

completely connected layers. Neurons in a fully connected 

layer are coupled to all activations in the preceding layer. This 

layer operates as a conventional neural network and contains 

around 90 percent of CNN's parameters. This layer accepts as 

input the output of the previous pooling layer and generates an 

N-dimensional vector, where N is the number of classes from 

which the program must select. It permits the neural network 

to be fed forward into a vector of a predetermined length. For 

image categorization, we might feed the vector into specific 

numeric classes [32]. The output is similarly a number vector. 

 

3. Results and Discussion 
 

3.1 Exposition of the Numerical Model and Simulation 
 

To calculate the free vibration frequency for various mode 

shapes, a 3D model of a cantilevered beam is presented. The 

software (Ansys 2022R1) will employ a 3D model that was 

created to simulate the deflection of a cracked cantilever beam. 

Steel beam has the following physical characteristics: modulus 

of elasticity (E=210 GPa), density 3/7860 mkg= , and 

Poisson's ratio 3.0= . The beam's length (L=3m), width 

(W=0.25m), and depth (H=0.20m) are depicted in (Figure 3). 

An open edge crack of type V- shaped, perpendicular to the 

longitudinal axis, with a uniform depth over the span of the 

cantilever beam was simulated to analyze crack behavior. In 

order to examine the behavior of damage indicators, fifteen 

different damage scenarios are selected and simulated, where 

the location and size of the damage are modified as shown in 

Table 1. The data analysis led to the conclusion that all cracked 

models should feature a V-shaped notched crack of opening 2 

mm. 

 
Fig. 3 cantilever beam model. 

 
Table-1: presented cases studies of damage. 

Damage case 1 2 3 4 5 

Crack location 

(mm) 
500 1000 1500 2000 2500 

Crack depth 

(mm) 
50 50 50 50 50 

Damage case 6 7 8 9 10 

Crack location 

(mm) 
500 1000 1500 2000 2500 

Crack depth 

(mm) 
100 100 100 100 100 

Damage case 11 12 13 14 15 

Crack location 

(mm) 
500 1000 1500 2000 2500 

Crack depth 

(mm) 
150 150 150 150 150 

 

The vertical Y displacement of the nodes along the lower edge 

of the cantilever beam is chosen to indicate the beam's 

deflection.  

Presence of crack causes a complex geometrical property 

which is difficult to study. Therefore, Ansys 2022R1's 3D 

tetrahedron element was employed as the FEM type to 

construct the mesh. 

A total of thirty Ansys 2022R1 models are generated for study 

and discussion of the influence of all damage location and 

depth (crack). The program controls the number of meshing 

sites, which varies according on the structure's geometry and 

the size of the crack. A dense mesh is put close to the crack so 

that its precise location may be determined (Figure 4). 

 

 
Figu. 4 mesh of Finite-element model. 
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Table 2 displays the findings of a cracked cantilever beam for 

different types of meshing influence of mesh size on first 

natural frequency using the ansys program and three mesh 

sizes (5mm, 11mm, and 21mm). Observations indicate that 

combined (Automatic) meshing results in a greater fall in 

natural frequency, confirming the idea that natural frequency 

decreases for discontinuous structures. Hence, utilizing both 

wedge and hexahedral elements simultaneously for local 

meshing yields the best results in compared to the theoretical 

outcomes. 

Table 2 A comparison of outcomes for various types and sizes of meshing. 

Effect type of 

mesh size 

Mesh size-

5mm 

Mesh size-

11mm 

Mesh size-

21mm 

Atutomatic 18.557 18.561 18.559 

Tetrahedrons 18.395 18.485 18.525 

Hex Dominant 18.332 18.389 18.405 

 

3.2 Effect of crack location and depth 
 

The influence of the crack is illustrated in Table 3 based on the 

modes shape and natural frequency at a certain depth of 50 mm 

and in a variety of places. This table includes information 

about the crack. The tables make it abundantly evident to that 

the natural frequency varies from one location to another at the 

same depth, despite the fact that they are all the same distance 

apart. For the first mode, the frequency of the crack rises as it 

advances further away from the end that is fixed. In other 

words, there is less of a decline in frequency for cracks that are 

placed closer to the free end, but in the second mode, the 

frequency begins to decrease and then gradually increases 

again. It is obvious from looking at the data that the frequency 

follows a pattern that alternates between growing and 

shrinking for the third mod. This fact is readily apparent. In 

addition, the effect of crack depth for a particular crack 

location has been demonstrated through Table 4 and Figure 5. 

From these two figures, it is clear that the frequency drops as 

the crack depth increases, which supports the hypothesis that 

crack depth has an influence on frequency. 

 
Table 3 Effect of crack depth on the first three natural frequencies in the 

event that a crack is present (1500 mm). 

Crack depth 

(mm) 
( )HzF1

 ( )HzF2  ( )HzF3
 

20 18.534 113.33 309.59 

50 18.397 109.95 309.55 

80 18.089 103.42 309.39 

100 17.707 96.802 309.16 

150 14.994 72.086 307.66 

 
Table 4 the influence of crack location on the first three natural frequencies 

if crack location is (50 mm). 

Crack location 

(mm) 
( )HzF1

 ( )HzF2  ( )HzF3
 

500 17.772 113.61 308.53 

1000 18.148 112.54 301.41 

1500 18.089 103.42 309.39 

2000 18.521 111.11 298.92 

2500 18.558 113.54 304.19 

 

 
Fig. 5 (a) shows a visual depiction of three modes in the Ansys program on 

the left, and (b)  representation of three modes in the Matlab program on the 
right. 

 

3.2 Analysis of CWT Scalograms for damage identification 

    The suggested approaches of modes shaped above were 

also explored by adopting a novel strategy in the treatment of 

damaged packages, which is the usage of the CWT method 

according to some damage indicators, which are Modal 

Assurance Criterion (MAC) based on mode shape data and 

according to eq (14), The results produced from natural 

frequencies and modes shapes were analyzed according to the 

continuous wavelet transform method (CWT), based on the 

difference in deformation along the beam for both damaged 

and intact beams. 

As for the figures showed the behavior of damage or defect in 

the beams at different locations and depths, it's obvious from 

the figures that the CWT method of determining the damage 

corresponds exactly to the actual situation of the crack in terms 

of location and depth, and also has the ability to assess the 

damage correctly and with very high accuracy, regardless of 

the location and depth of the damage. Where figure 6, 7 and 8 

represents the calculated value of the CWT coefficients that 

were generated using the MATLAB program for different 

cases of damage at different locations and different depths. In 

all cases the wavelet function sym1 and scale values ranging 

from 1 to 46 were used. 
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Fig. 6 Represent the damage in CWT Wavelet Analysis for 

case different crack location and Crack depth 50 mm. 
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Fig. 7 Represent the damage in CWT Wavelet Analysis for case different 

crack location and Crack depth 100 mm. 
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Fig. 8 Represent the damage in CWT Wavelet Analysis for case different 

crack location and Crack depth 150 mm. 

 

3.3 Setup of CNN and creating data base of damaged 

beams 
 

The network structure in this paper followed Mat-ConvNet (a 

MATLAB toolbox implementing convolutional artificial 

neural networks CNNs for computer vision applications), as 

these networks are widely used in the field of image processing 

(image net), where images about the location and depth of the 

crack were fed to the program based on the images generated 

by Using CWT. In this study, the Alexnet algorithm was 

employed to differentiate between images. 

AlexNet is a convolutional neural network (CNN) architecture 

developed at the University of Toronto by Alex Krizhevsky, 

Geoffery Hinton, and others [33, 34]. It was created primarily 

as a classification tool and won the 2012 ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC). Alexnet is 

regarded as one of the pioneering designs in deep learning, and 

its success in computer vision problems inspired many 

subsequent structures such as VGG, ResNet, and Inception 

[35]. This algorithm comprises of 25 layers that are capable of 

differentiating between 1,000 groups or types. It includes five 

convolutional layers, three fully-connected layers, and a 

softmax output layer. 

In this study, the same structure of the AlexNet method was 

utilized, but a straightforward procedure was applied to replace 

the final three levels of the fully connected layer with a single 

layer using the transfer layer directive. The CNN's structural 

parameters are listed in Table 5. 

 
Table 5: Structural parameters of Alex net CNN 

layer description 

Number of layers 22 layers 

Input Images (jpg) (227*227*3) 

Number of 

convolution layer 

5 layers, Conv-1 with stride [4  4] 

and padding [0  0  0  0], Conv-4-5 

with stride [1  1] and padding [1  1  

1  1] 

Number of max 

pooling 

5, with stride [2  2] and padding [0  

0  0  0] 

 

Number of ReLU 5, relu 

Number of 

activation layers 
5 layers 

Number of 

dropouts 
7, 50 % dropout 

Number of fully 

connected layers 

7 layers, weight (4096*4096), Biases 

(4096*1) 

Softmax softmax 

Output Classification output 

 

In order to prepare a database for the purpose of training the 

CNN neural network, 30 images were generated for each of 

the cases of damage that were discussed, and the table shows 

the number of cases that were discussed, as well as the learning 

values.  

Table 6 shows the nodes where the different damages were 

located.  Separate the data into sets for training and validation. 

70% of the photos should be used for training, whereas 30% 

should be used for validation. Figure 9 illustrates how to 

construct the database for each of the examined damage 

instances.  As for Figure 10, it shows the results of CNN 

Neural Network, where the figure shows the accuracy of the 
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algorithm in recognition, and its results are highly accurate in 

recognizing each class of damage used, and this is evident 

through the confusion matrix. 

 
Table 6: classification and results of multiple damage of Alex net CNN 

properties description 

Number of classes 
5 classes (recognize crack 

location) 

Number of image for each 

class 
30 images 

Learning rate  1*10-4 

Number of epoch 6 epoch 

Range pixel [-30 30] 

 

 
Fig. 9 An images of database for CWT damage beam for different crack 

location.  

a) 

 
b) 

 
c) 

 
Fig. 10 Results of CNN network classification of damage for different crack 

location. (a) Accuracy, (b) Confusion matrix and (c) Number of classes of 

CNN. 

 

4. Conclusion 
 

On the basis of modal analysis, a novel method for the reliable 

detection of the location of a localized damage feature along a 

cantilever beam has been given. This is based on calculating 

the differences between the refined modal shapes and those 

corresponding to the safe state of the structure are afterwards 

computed.  In addition, this method utilizes the most recent 

technology in Continues Wavelet Transform (CWT) to detect 

damage, as it is able to do multiscale analysis on various mode 

forms. The resultant coefficients are weighted in accordance 

with the variations in the natural frequencies, enabling full 

utilization of the information contained in the scalogram of the 

wavelet-transformed mode shape differences. The CNN image 

processing method was utilized to swiftly detect and pinpoint 

damage during the final neural network processing stage. 

Based on the findings of this study, the following inferences 

can be made: 

The natural frequency decreases due to the presence of cracks. 

The amount of reduction depends on the location and size of 

the incisions. For a given crack location, the natural 

frequencies of the cracked beam are inversely proportional to 

the depth of the crack. 
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Continues Wavelet Transform CWT has the most solid 

performance in calculating the effect of damage indicators and 

evaluating them correctly. CNN is reliable in identifying the 

exact location and severity of structural damage. And as for 

results, the proposed algorithm of AlexNet can predict it with 

100% efficiency in all samples studied. The present work 

focuses on beams with simple geometry and modular damage 

feature In the future, experimental data will be used to test the 

methodology's efficacy in real-world situations. 
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